close
close

Interactions between Bacillus thuringiensis and selected plant extracts for sustainable management of Phthorimaea absoluta

  • Erika, C., Griebel, S., Naumann, M. & Pawelzik, E. Biodiversity in tomatoes: Is it reflected in nutrient density and nutritional yields under organic outdoor production?. Front. Plant Sci. https://doi.org/10.3389/fpls.2020.589692 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ali, M. Y. et al. Nutritional composition and bioactive compounds in tomatoes and their impact on human health and disease: A review. Foods 10, 45 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Olubanjo, O. O. & Alade, A. E. Growth and yield response of cayenne pepper plant grown in different substrates culture of drip hydroponic farming method. Appl. Res. J. Environ. Eng. 1, 14–21 (2018).

    Article 

    Google Scholar 

  • Creamer, N. G., Bennett, M. A., Stinner, B. R. & Cardina, J. A comparison of four processing tomato production systems differing in cover crop and chemical inputs. J. Am. Soc. Hortic. Sci. 121, 559–568 (1996).

    Article 

    Google Scholar 

  • Ochilo, W. N. et al. Characteristics and production constraints of smallholder tomato production in Kenya. Sci. Afr. 2, e00014 (2019).

    Google Scholar 

  • Geoffrey, S. K., Hillary, N. K., Antony, K. M., Mariam, M. & Mary, M. C. Challenges and strategies to improve tomato competitiveness along the tomato value chain in Kenya. Int. J. Bus. Manag. 9(9), 205 (2014).

    Article 

    Google Scholar 

  • Rwomushana, I. et al. Evidence note – Tomato leafminer (Tuta absoluta): Impacts and coping strategies for Africa. vol. 12 (CABI Working Paper, 2019).

  • Akutse, K. S., Berg, J., Maniania, N. K., Fiaboe, K. K. M. & Ekesi, S. Interactions between Phaedrotoma scabriventris Nixon (Hymenoptera: Braconidae) and Diglyphus isaea Walker (Hymenoptera: Eulophidae), parasitoids of Liriomyza huidobrensis (Blanchard) (Diptera: Agromyzidae). Biol. Control 80, 8–13 (2015).

    Article 

    Google Scholar 

  • Mansour, R. et al. Occurrence, biology, natural enemies and management of Tuta absoluta in Africa. Entomol. Gen. 38, 83–112 (2018).

    Article 

    Google Scholar 

  • Vacas, S., Alfaro, C., Primo, J. & Navarro-Llopis, V. Studies on the development of a mating disruption system to control the tomato leaf miner Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Pest Manag. Sci. 67(11), 1473–1480 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Desneux, N. et al. Integrated pest management of Tuta absoluta: Practical implementations across different world regions. J. Pest Sci. 95, 17–39 (2022).

    Article 

    Google Scholar 

  • Biondi, A., Guedes, R. N. C., Wan, F. H. & Desneux, N. Ecology, worldwide spread and management of the invasive South American tomato pinworm, Tuta absoluta: Past, present and future. Annu. Rev. Entomol. 63, 239–258 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Desneux, N. et al. Biological invasion of European tomato crops by Tuta absoluta: Ecology, geographic expansion and prospects for biological control. J. Pest Sci. 83, 197–215 (2010).

    Article 

    Google Scholar 

  • Mutamiswa, R., Machekano, H. & Nyamukondiwa, C. First report of tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), in Botswana. Agric. Food Secur. 6, 1–10 (2017).

    Article 

    Google Scholar 

  • Massomo, S. M. S. Vegetable pest management and pesticide use in Kigoma, Tanzania: Challenges and way forward. Huria J. 26, 195–227 (2019).

    Google Scholar 

  • Campos, M. R. et al. Spinosad and the tomato borer Tuta absoluta: A bio-insecticide, an invasive pest threat, and high insecticide resistance. PLoS One 9, 103235 (2014).

    Article 
    ADS 

    Google Scholar 

  • Grant, C. et al. The evolution of multiple-insecticide resistance in UK populations of tomato leafminer, Tuta absoluta. Pest Manag. Sci. 75(8), 2079–2085 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zibaee, I., Mahmood, K., Esmaeily, M., Bandani, A. R. & Kristensen, M. Organophosphate and pyrethroid resistances in the tomato leaf miner Tuta absoluta (Lepidoptera: Gelechiidae) from Iran. J. Appl. Entomol. 142, 181–191 (2018).

    Article 
    CAS 

    Google Scholar 

  • Haddi, K. et al. Mutation in the ace-1 gene of the tomato leaf miner (Tuta absoluta) associated with organophosphates resistance. J. Appl. Entomol. 141, 612–619 (2017).

    Article 
    CAS 

    Google Scholar 

  • Siqueira, H. A. A., Guedes, R. N. C. & Picanco, M. C. Cartap resistance and synergism in populations of Tuta absoluta (Lepidoptera: Gelechiidae). J. Appl. Entomol. 124, 233–238 (2000).

    Article 
    CAS 

    Google Scholar 

  • Roditakis, E. et al. Ryanodine receptor point mutations confer diamide insecticide resistance in tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae). Insect Biochem. Mol. Biol. 80, 11–20 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Silva, G. A. et al. Control failure likelihood and spatial dependence of insecticide resistance in the tomato pinworm, Tuta absoluta. Pest Manag. Sci. 67, 913–920 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Stevenson, P. C., Isman, M. B. & Belmain, S. R. Pesticidal plants in Africa: A global vision of new biological control products from local uses. Ind. Crop. Prod. 110, 2–9 (2017).

    Article 

    Google Scholar 

  • Agbessenou, A. et al. Endophytic fungi protect tomato and nightshade plants against Tuta absoluta (Lepidoptera: Gelechiidae) through a hidden friendship and cryptic battle. Sci. Rep. 10, 22195 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gupta, S. & Dikshit, A. K. Biopesticides: An ecofriendly approach for pest control. J. Biopest. 3, 186–188 (2010).

    Google Scholar 

  • Akutse, K. S., Subramanian, S., Maniania, N., Dubois, T. & Ekesi, S. Biopesticide research and product development in Africa for sustainable agriculture and food security–Experiences from the International Centre of Insect Physiology and Ecology (icipe). Front. Sustain. Food Syst. 4, 563016 (2020).

    Article 

    Google Scholar 

  • Mansour, R. & Biondi, A. Releasing natural enemies and applying microbial and botanical pesticides for managing Tuta absoluta in the MENA region. Phytoparasitica 49, 179–194 (2021).

    Article 

    Google Scholar 

  • Hilbeck, A. & Otto, M. Specificity and combinatorial effects of Bacillus thuringiensis Cry toxins in the context of GMO environmental risk assessment. Front. Environ. Sci. 3, 71 (2015).

    Article 

    Google Scholar 

  • Ribeiro, A. S., Estanqueiro, M., Oliveira, M. B., Manuel, J. & Lobo, S. Main benefits and applicability of plant extracts in skin care products. Cosmetics 2, 48–65 (2015).

    Article 
    CAS 

    Google Scholar 

  • Abdeltawab, A. M. Bioscience research. Biosci. Res. 16, 2272–2281 (2018).

    Google Scholar 

  • González-Cabrera, J., Mollá, O., Montón, H. & Urbaneja, A. Efficacy of Bacillus thuringiensis (Berliner) in controlling the tomato borer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). BioControl 56, 71–80 (2010).

    Article 

    Google Scholar 

  • Tarusikirwa, V. L., Machekano, H., Mutamiswa, R., Chidawanyika, F. & Nyamukondiwa, C. Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) on the “offensive” in Africa: Prospects for integrated management initiatives. Insects 11, 1–33 (2020).

    Article 

    Google Scholar 

  • Alsaedi, G., Ashouri, A. & Talaei-Hassanloui, R. Evaluation of Bacillus thuringiensis to control Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) under laboratory conditions. Agric. Sci. 08, 591–599 (2017).

    CAS 

    Google Scholar 

  • Chaudhary, S. et al. Progress on Azadirachta indica based biopesticides in replacing synthetic toxic pesticides. Front. Plant Sci. 8, 610 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tang, Y. Q., Weathersbee, A. A. & Mayer, R. T. Effect of neem seed extract on the brown citrus aphid (Homoptera: Aphididae) and its parasitoid Lysiphlebus testaceipes (Hymenoptera: Aphidiidae). Environ. Entomol. 31, 172–176 (2002).

    Article 
    CAS 

    Google Scholar 

  • Shannag, H. K., Capinera, J. L. & Freihat, N. M. Effects of neem-based insecticides on consumption and utilization of food in larvae of Spodoptera eridania (Lepidoptera: Noctuidae). J. Insect Sci. 15, 152 (2015).

    Article 
    CAS 

    Google Scholar 

  • Abdel-Hakim, E. A., Ibrahim, S. S. & Salem, N. Y. Effect of garlic and lemongrass essential oils on some biological and biochemical aspects of corn stem borer Sesamia cretica larvae (Lepidoptera: Noctuidae) during dia-pausing phase. in Proceedings of the Zoological Society vol. 74 73–82 (Springer India) (2001).

  • Nouri-Ganbalani, G., Borzoui, E., Abdolmaleki, A., Abedi, Z. & George Kamita, S. Individual and combined effects of Bacillus thuringiensis and azadirachtin on Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). J. Insect Sci. 16, 95 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Singh, G., Rup, P. J. & Koul, O. Acute, sublethal and combination effects of azadirachtin and Bacillus thuringiensis toxins on Helicoverpa armigera (Lepidoptera: Noctuidae) larvae. Bull. Entomol. Res. 97, 351–357 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nuñez-Mejía, G., Valadez-Lira, J. A., Gomez-Flores, R., Rodríguez-Padilla, C. & Tamez-Guerra, P. Trichoplusia ni (Lepidoptera: Noctuidae) survival, immune response, and gut bacteria changes after exposure to Azadirachta indica (Sapindales: Meliaceae) volatiles. Fla. Entomol. 99, 12–20 (2016).

    Article 

    Google Scholar 

  • Broderick, N. A., Robinson, C. J. & McMahon, M. D. Contributions of gut bacteria to Bacillus thuringiensis-induced mortality vary across a range of Lepidoptera. BMC Biol. 7, 1–9 (2009).

    Article 

    Google Scholar 

  • Hernández-Martínez, P. et al. Constitutive activation of the midgut response to Bacillus thuringiensis in Bt-resistant Spodoptera exigua. PlosOne 5, e12795 (2010).

    Article 
    ADS 

    Google Scholar 

  • Baig, D. N. & Mehnaz, S. Determination and distribution of cry-type genes in halophilc Bacillus thuringiensis isolates of Arabian Sea sedimentary rocks. Microbiol. Res. 165, 376–383 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • O’Callaghan, M., Glare, T. R. & Lacey, L. A. Bioassay of bacterial entomopathogens against insect larvae. in Manual of Techniques in Invertebrate Pathology 101–127 (2012).

  • Scott, I. M. et al. Efficacy of piper (Piperaceae) extracts for control of common home and garden insect pests. J. Econ. Entomol. 97, 1390–1403 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL. http://www.R-project.org. (2008).