close
close

Efficacy evaluation of hydrogen peroxide disinfectant based zinc oxide nanoparticles against diarrhea causing Escherichia coli in ruminant animals and broiler chickens

  • Allam, S. A. et al. Molecular detection of Inva and Hila virulent genes in salmonella serovars isolated from fresh water fish. Slov. Vet. Res. 56, 693–698. https://doi.org/10.26873/SVR-809-2019 (2019).

    Article 

    Google Scholar 

  • Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308(5728), 1635–8. https://doi.org/10.1126/science.1110591 (2005).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jang, J. et al. Environmental Escherichia coli: Ecology and public health implications-a review. J. Appl. Microbiol. 123(3), 570–581. https://doi.org/10.1111/jam.13468 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fairbrother, J. M. & Nadeau, E. Escherichia coli: On-farm contamination of animals. Rev. Sci Tech. 25(2), 555–569 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Arshad, R., Farooq, S. & Ali, S. S. Manipulation of different media and methods for cost-effective characterization of Escherichia coli strains collected from different habitats. Pak. J. Bot. 38, 779–789 (2006).

    Google Scholar 

  • Kirk, M. D. et al. World Health Organization estimates of the global and regional disease burden of 22 food-borne bacterial, protozoal, and viral diseases, 2010: A data synthesis. PLoS Med. 12(12), e1001921. https://doi.org/10.1371/journal.pmed.1001921 (2010).

    Article 

    Google Scholar 

  • Caprioli, A., Maugliani, A., Michelacci, V. & Morabito, S. Molecular typing of Verocytotoxin-producing Escherichia coli (VTEC) strains isolated from food, feed and animals: State of play and standard operating procedures for pulsed field gel electrophoresis (PFGE) typing, profiles interpretation and curation1. EFSA 1, 1–55. https://doi.org/10.2903/sp.efsa.2014.EN-704 (2014).

    Article 

    Google Scholar 

  • Gharieb, R. M., Fawzi, E. M., Attia, N. E. & Bayoumi, Y. H. Calf diarrhea in Sharkia province, Egypt: Diagnosis; prevalence, virulence profiles and zoonotic potential of the causative bacterial agents. Int. J. Agric. Sci. Vet. Med. 3(2), 71–87 (2015).

    Google Scholar 

  • Ferrari, R. G., Panzenhagen, P. H. N. & Conte-Junior, C. A. Phenotypic and genotypic eligible methods for Salmonella Typhimurium source tracking. Front. Microbiol. Front. Med. SA 8, 2587. https://doi.org/10.3389/fmicb.2017.02587 (2017).

    Article 

    Google Scholar 

  • Nakamura, A. et al. Molecular subtyping for source tracking of Escherichia coli using core genome multilocus sequence typing at a food manufacturing plant. PLoS One 16(12), e0261352 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramadan, H. et al. Antimicrobial resistance, genetic diversity and multilocus sequence typing of Escherichia coli from humans, retail chicken and ground beef in Egypt. Pathogens 9, 357. https://doi.org/10.3390/pathogens9050357 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, Y. & Perfect, J. R. Efficient, cost-effective, high-throughput, multilocus sequencing typing (MLST) Method, NGMLST, and the Analytical Software Program MLSTEZ. In Genotyping (eds White, Stefan J. & Cantsilieris, Stuart) 197–202 (Springer New York, 2017). https://doi.org/10.1007/978-1-4939-6442-0_14.

    Chapter 

    Google Scholar 

  • Ramadan, A. A. Bacterial typing methods from past to present: A comprehensive overview. Gene Rep. 29, 101675. https://doi.org/10.1016/j.genrep.2022.101675 (2022).

    Article 
    CAS 

    Google Scholar 

  • Souza, R. A., Pitondo-Silva, A., Falcão, D. P. & Falcão, J. P. Evaluation of four molecular typing methodologies as tools for determining taxonomy relations and for identifying species among Yersinia isolates. J. Microbiol. Methods. 82(2), 141–150. https://doi.org/10.1016/j.mimet.2010.05.005 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hulton, C. S., Higgins, C. F. & Sharp, P. M. ERIC sequences: A novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol. Microbiol. 5(4), 825–834. https://doi.org/10.1111/j.1365-2958.1991.tb00755.x (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chansiripornchai, N., Ramasoota, P., Sasipreyajan, J. & Svenson, S. B. Differentiation of avian Escherichia coli (APEC) isolates by random amplified polymorphic DNA (RAPD) analysis. Vet. Microbiol. 80, 75–83 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Galane, P. M. & Le Roux, M. Molecular epidemiology of Escherichia coli isolated from young South African children with diarrhoeal diseases. J. Health Popul. Nutr. 19(1), 31–8 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Sekhar, M. S., Sharif, N. M., Rao, T. S. & Metta, M. Genotyping of virulent Escherichia coli obtained from poultry and poultry farm workers using enterobacterial repetitive intergenic consensus-polymerase chain reaction. Vet. World. 10(11), 1292–1296 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mousavi, Z. E., Fanning, S. & Butler, F. Effect of surface properties of different food contact materials on the efficiency of quaternary ammonium compounds residue recovery and persistence. Int. J. Food Sci. Tech. 48(9), 1791–1797. https://doi.org/10.1111/ijfs.12152 (2013).

    Article 
    CAS 

    Google Scholar 

  • Rios-Castillo, A. G., Gonzalez-Rivas, F. & Rodriguez-Jerez, J. J. Bactericidal efficacy of hydrogen peroxide-based disinfectants against gram-positive and gram-negative bacteria on stainless steel surfaces. J. Food Sci. 82(10), 2351–2356. https://doi.org/10.1111/1750-3841.13790 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kelly, S. A. et al. Oxidative stress in toxicology: Established mammalian and emerging piscine model systems. Environ. Health Perspect. 106, 375–384. https://doi.org/10.1289/ehp.98106375 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brayner, R. et al. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 6, 866–870. https://doi.org/10.1021/nl052326h (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Cho, Y. I. & Yoon, K. J. An overview of calf diarrhea – Infectious etiology, diagnosis, and intervention. J. Vet. Sci. 15(1), 1–17. https://doi.org/10.4142/jvs.2014.15.1.1 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, M.D. & Nolan, K.L. A laboratory manual for the isolation and identification of avian pathogen In: Zavala, L.D., Swayne, D.E., John, R.C., Mark, W.G Wood, J., Pearson, J.E. and Reed, W.M, editors. Editorial, Board for the American Association of Avian Pathologists. 5th ed., Ch. 3. American Association, Colibacillosis. P10–16 (2008).

  • Vidotto, M. C. et al. Virulence factors of avian Escherichia coli. Avian Dis. 34(3), 531–538 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Berkhoff, H. A. & Vinal, A. C. Congo red medium to distinguish between invasive and non-invasive Escherichia coli pathogenic for poultry. Avian Dis. 30(1), 117–121 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Morris, J. A., Sojka, W. J. & Ready, R. A. Serological comparison of the Escherichia coli prototype strains for the F(Y) and Att 25 adhesions implicated in neonatal diarrhoea in calves. Res. Vet. Sci. 38(2), 246–247 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Versalovic, J., Koeuth, T. & Lupski, J. R. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 19, 6823–6831 (1991).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hunter, P. R. Reproducibility and indices of discriminatory power of microbial typing methods. J. Clin. Microbiol. 28(9), 1903–1905. https://doi.org/10.1128/jcm.28.9.1903-1905.1990 (1990).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Q. et al. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res. 42, 4591–4602. https://doi.org/10.1016/j.watres.2008.08.015 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Salah, N. et al. High energy ball milling technique for ZnO nanoparticles as antibacterial material. Int. J. Nanomed. 6, 863–869. https://doi.org/10.2147/IJN.S18267 (2011).

    Article 
    CAS 

    Google Scholar 

  • Clinical and Laboratory Standards Institute (CLSI) Performance standards for antimicrobial susceptibility testing 29th ed: CLSI supplement M100, Wayne, PA. 2019; https://clsi.org/media/2663/m100ed29_sample.pdf

  • Jianga, L. et al. Virulence-related O islands in enterohemorrhagic Escherichia coli O157:H7. Gut Microbes. 13(1), e1992237. https://doi.org/10.1080/19490976.2021.1992237 (2021).

    Article 
    CAS 

    Google Scholar 

  • Cho, S. et al. Prevalence and characterization of Escherichia coli O157 isolates from Minnesota dairy farms and county fairs. J. Food Prot. 69(2), 252–259. https://doi.org/10.4315/0362-028X-69.2.252 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ateb, C. N. & Mbewe, M. Determination of the genetic similarities of fingerprints from Escherichia coli O157:H7 isolated from different sources in the North West Province, South Africa using ISR. BOXAIR REP-PCR analysis. Microbiol Res. 168(7), 438–446. https://doi.org/10.1016/j.micres.2013.02.003 (2013).

    Article 
    CAS 

    Google Scholar 

  • Paletta, A. C., Castro, V. S. & Conte-Junior, C. A. Shiga toxin-producing and enteroaggregative Escherichia coli in animal, foods, and humans: Pathogenicity mechanisms, detection methods, and epidemiology. Curr Microbiol. 77(4), 612–620. https://doi.org/10.1007/s00284-019-01842-1 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Idalia, V. M. N. & Bernardo, F. Escherichia coli as a model organism and its application in biotechnology. Recent Adv. Physiol. Pathog. Biotechnol. Appl. Tech Open Rij. Croat 13, 253–274 (2017).

    Google Scholar 

  • Blount, Z. D. The natural history of model organisms: The unexhausted potential of Escherichia coli. Elife 4, e05826 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aquino, M. H. et al. Diversity of Campylobacter jejuni and Campylobacter coli genotypes from human and animal sources from Rio de Janeiro. Brazil. Res Vet Sci. 88, 214–217 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Macedo, N. R. et al. ERIC-PCR genotyping of Haemophilus parasuis isolates from Brazilian pigs. Vet J. 188, 362–364 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Munoz, V. et al. Phenotypic and phylogenetic characterization of native peanut Bradyrhizobium isolates obtained from Cordoba, Argentina. Syst. Appl. Microbiol. 34, 446–452 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Fouad, H. et al. Prevalence of pathogenic Escherichia coli in diarrhoeic cattle calves and antibiotic resistance genes. KVMJ 20(1), 12–18. https://doi.org/10.21608/kvmj.2022.233209 (2022).

    Article 

    Google Scholar 

  • Algammal, A. M. et al. Virulence-determinants and antibiotic-resistance genes of MDR-Escherichia coli isolated from secondary infections following FMD-outbreak in cattle. Sci. Rep. https://doi.org/10.1038/s41598-020-75914-9 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khalil, S. A. & Eraky, M. I. Microbiological Study of Escherichia coli in Sheep. Alex. J. Vet. Sci. 37(1), 62–68 (2012).

    Google Scholar 

  • Hafez, A. A. Virulence and antimicrobial resistance genes of Escherichia coli isolated from diarrheic sheep in the North-West Coast of Egypt. Syst. Rev. Pharm. 11(11), 609–617 (2020).

    CAS 

    Google Scholar 

  • EL-Demerdash, G. O., Fatma, A. & Heba, R. Diarrheic syndrome in broiler and some wild birds caused by Escherichia coli. Assiut Vet. Med. J. 67(169), 1–14. https://doi.org/10.21608/avmj.2021.188712 (2021).

    Article 

    Google Scholar 

  • Abd-El-Wahed, M. A. Virulence determinant of enterotoxigenic Escherichia coli and its relation to adhesive antigen K99 associated with diarrhea in newly born calves. M.V.Sc. Thesis, Zagazig Univ., Fact. Vet. Med (2005).

  • Quinn, P.J., Carter, M.E., Markey, B.K. & Carter, G.R. Clinical. Veterinary Microbiology. Mosby year book Europe limited, Linton House. London, pp: 109–126 (1994).

  • Abd, El.-T.A. et al. Prevalence of multi-drug resistant Escherichia coli in diarrheic ruminants. BVMJ 38, 75–78 (2020).

    Google Scholar 

  • Wilczy’nski, J., Stepie’n-Py’sniak, D., Wystalska, D. & Wernicki, A. Molecular and serological characteristics of avian pathogenic Escherichia coli isolated from various clinical cases of poultry colibacillosis in Poland. Animals 12(9), 1090. https://doi.org/10.3390/ani12091090 (2022).

    Article 

    Google Scholar 

  • El-Mongy, M. A. et al. Serotyping and virulence genes detection in Escherichia coli isolated from broiler chickens. J. Biol. Sci. 18, 46–50 (2018).

    Google Scholar 

  • Fawzia, M. A. A., Hider, M. H. A. & Saa’d, M. S. A. In-vitro evaluation by Disc-diffusion and Pits methods of antimicrobial efficiency of disinfectants used in four broiler chicken hatcheries in Babil city/ Iraq. Acad. res. int. 6(4), 562–579 (2013).

    Google Scholar 

  • Gehan, M. Z. et al. In vitro efficacy comparisons of disinfectants used in the commercial poultry farms. Int. J. Poult. Sci. 8, 237–241 (2009).

    Article 

    Google Scholar 

  • Singh, M. et al. Comparative efficacy evaluation of disinfectants routinely used in hospital practices: India. Indian J. Crit Care Med. 16, 123–29. https://doi.org/10.4103/0972-5229.102067 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rutala, W.A. & Weber, D.J. the Healthcare Infection Control Practices Advisory Committee (HICPAC). Guideline for Disinfection and Sterilization in Healthcare Facilities (2008). https://www.cdc.gov/infectioncontrol/guidelines/disinfection/

  • Lineback, C. B. et al. Hydrogen peroxide and sodium hypochlorite disinfectants are more effective against Staphylococcus aureus and Pseudomonas aeruginosa biofilms than quaternary ammonium compounds. Antimicrob. Resist. Infect. Control 7, 154. https://doi.org/10.1186/s13756-018-0447-5 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang, Y., Zhang, L., Wen, D. & Ding, Y. Role of physical and chemical interactions in the antibacterial behavior of ZnO nanoparticles against Escherichia coli. Mater. Sci Eng: C. 69, 1361–1366. https://doi.org/10.1016/j.msec.2016.08.044 (2016).

    Article 
    CAS 

    Google Scholar 

  • Siddiqi, K. S., Rahman, A. U., Tajuddin, & Husen, A. Properties of Zinc Oxide Nanoparticles and their activity against Microbes. Nanoscale Res. let. 13, 141. https://doi.org/10.1186/s11671-018-2532-3 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Abdelghany, T. M. et al. Phytofabrication of zinc oxide nanoparticles with advanced characterization and its antioxidant, anticancer, and antimicrobial activity against pathogenic microorganisms. Biomass Conv. Bioref. 13, 417–430. https://doi.org/10.1007/s13399-022-03412-1 (2023).

    Article 
    CAS 

    Google Scholar 

  • Shi, L. E. et al. Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: A review. Food Addit. Contam Part A Chem. Anal. Control Expo. Risk Assess. 31, 173–186. https://doi.org/10.1080/19440049.2013.865147 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dutta, R. K., Nenavathu, B. P., Gangishetty, M. K. & Reddy, A. V. Antibacterial effect of chronic exposure of low concentration ZnO nanoparticles on Escherichia coli. J. Environ. Sci. Health A Tox Hazard Subst. Environ. Eng. 48(8), 871–878. https://doi.org/10.1080/10934529.2013.761489 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mohamed, A. A. et al. Eco-friendly mycogenic synthesis of ZnO and CuO nanoparticles for in vitro antibacterial, antibiofilm, and antifungal applications. Biol. Trace Elem. Res. 199, 2788–2799. https://doi.org/10.1007/s12011-020-02369-4 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar